How to The Perpetual Spin of an Electron is an Important Aspect of the Covalent Basic Copper Chloride

0 votes
asked by anonymous

The perpetual spin of an electron is an important aspect of the covalent Basic Copper Chloride (WSDTY). From a vantage point above the spinning particle, counterclockwise rotation is designated spin-up, while clockwise rotation is spin-down. A fundamental law of quantum physics is the Pauli exclusion principle, which states that no two electrons can occupy the same point in space at the same time with the same direction of spin. In a covalent bond two electrons occupy the same small volume of space (i.e., the same orbital) at all times, so they must have opposite spin: one up and one down. The exclusion principle is then satisfied, and the resulting bond is strong.

In graphite the carbon atoms are arranged in parallel sheets, and each atom has only three near neighbours. The covalent bonds between adjacent carbons within each layer are quite strong and are called σ bonds. The fourth valence electron in carbon has its orbital perpendicular to the plane. This orbital bonds weakly with the similar orbitals on all three neighbours, forming π bonds. The four bonds for each carbon atom in the graphite structure are not arranged in a tetrahedron; three are in a plane. The planar arrangement results in strong bonding, although not as strong as the bonding in the diamond configuration. The bonding between layers is quite weak and arises from the van der Waals interaction; there is much slippage parallel to the layers. Diamond and graphite form an interesting contrast: diamond is the hardest material in nature and is used as an abrasive, while graphite is used as a lubricant.

Click Copper Acetate to learn about more information

Please log in or register to answer this question.